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1 Random Variables
Any random variable consits of two components: a range of possible values over
which it is defined (for example, age brackets or gender categories), and a probability
structure over that range (how probable is each value in that range?). Suppose we
want to model the biological sex of individuals in a certain population. Let S be our
random variable for sex, and let Si denote individual i’s sex. Suppose, further, that
an individual can be either male or female. Then, we can calculate the probability
that individual i is, for example, female by computing p(Si = female). Notice that
p(Si = female) + p(Si = male) = 1, as every individual, at least in our specification,
has to belong to one of the two sexes. This reflects a more general rule: the values
a random variable can assume form a partition of the sample space, which is to say
that they are (1) disjoint (i.e., if a random variable should realize itself to one value,
this will tell us that it did not realize itself to any of the others) and (2) mutually
exhaustive of all possible outcomes — as in our example, where every individual
belongs to no more than one sex and no individual belongs to neither sex.

Random variables come in two varieties:

1. Discrete: the random variable assumes a finite number of distinct values —
or, to put the point more accurately, at most countably infinitely many distinct
values. Examples include any variables with strictly delineated categories: for
instance, age defined in terms of non-overlapping age brackets or education
defined in terms of highest completed degree.

2. Continuous: the random variable is defined over an interval of the real line,
which is to say that it can assume uncountably many values. Here, for any
two distinct values, however close they may be, we can always find a third
value between them. Examples include length, mass, or time measured on a
continuous scale.
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2 Distributions
It is common to use statistics to model empirical processes in order to estimate the
probability of observing particular outcomes. Every modelling exercise begins with
a specification of the relevant random variables and the distributional assumptions
governining their probability structure. Suppose, for example, that you are asked to
estimate the probability of observing 6 heads after tossing a fair coin 10 times. How
would you approach this problem? You should begin by identifying the essential
features of the empirical process that you are asked to examine. Reformulate the
question in more general terms: 10 trials are observed, each with a binary outcome,
and exactly 6 successes and 4 failures occur, where the probabilities of success and
failure remain constant throughout. The appropriate distribution for this job is the
binomial distribution, which is used to model the number of successes observed
in a series of (independent) binary trials. (The next section will consider the math-
ematical aspects of this problem in more depth.) It’s important to notice that the
same distributional assumption can be used to model the entire gamut of empirical
situations in which a series of events are observed, each capable of a binary outcome,
and a certain number of outcomes of interest are observed — for example, the num-
ber of marriages that end in divorce, the number of students who pass a test, or the
number of patients who test positive for a particular desease.

(1): the discrete case

The probability structure of a discrete random variable is given by its probability
mass function (PMF). The PMF tells us how much mass a variable assigns to each
of its possible values — or, in other words, how probable each value is. This function
has an intuitive interpretation: for each value of a random variable, it returns the
probability of observing exactly that value. Suppose that a random variable X is
distributed binomial. Then, its PMF, fX , is given by the following formula:

fX(k) = p(X = k) =

(
n

k

)
pk(1− p)n−k, (1)

where n is the total number of binary trials, k is the number of successes, p is the
probability of success in a given trial, and 1−p is the probability of failure in a trial.
More generally, every random variable can be defined in terms of its distribution (X
belongs to the binomial, as opposed to, say, the Gaussian, family) and the parameters
needed to specify that distribution (in the case of the binomial, we require the total
number of trials, n, and the probability of success in a trial, p).
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Let’s return to the earlier example of observing 6 heads after 10 coin tosses. Let
H model the number of heads we observe. Since the coin is fair, we can say that
H is distributed binomial with parameters n = 10 and p = 0.5. The probability of
observing exactly 6 heads, p(H = 6), is then given by the PMF of H evaluated at 6:

p(H = 6) = fH(6) =

(
10

6

)
0.56 × 0.510−6 = 0.21

Now, consider a slightly more difficult problem: how many heads are you most
likely to observe after 10 tosses? To solve this problem, we simply need to compute
p(H = k) for every k in the range of possible values over which H is defined. Now, if
a coin is tossed 10 times, the number of heads you observe can be anywhere from 0
to 10. (This reflects the more general principle that, for a binomial random variable,
k ∈ [0, n]).

It is straightforward to calculate these probabilities in R and visualize them on
a graph:

> ## Define the binomial parameters
> no.trials <- 10
> prob.heads <- 0.5
> possible.no.heads <- 0:10
>
> ## Create a container to record the probability
> ## of observing exactly k heads
> probs <- rep(NA, 11)
>
> for (k in 0:10) {
+ probs[k+1] <- choose(no.trials,k) * (prob.heads^k) *
+ ((1-prob.heads)^(no.trials-k))
+ ## Because R assigns the first element of a vector
+ ## the index of 1, we have to index probs by (k+1)
+ }
>
> names(probs) <- possible.no.heads
>
> ## Plot the probabilities
> barplot(probs, ylim = c(0,0.3),
+ xlab = "No of Heads", ylab = "Probability",
+ main = "Probability of Observing K Heads after 10 Tosses")

3



0 1 2 3 4 5 6 7 8 9 10

Probability of Observing K Heads after 10 Tosses

No of Heads

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

The above plot visualizes the PMF of H. The height of each bar corresponds to the
probability of observing that many heads. We can see that, for a fair coin, the most
probable outcome is exactly 5 heads out of a series of 10 tosses:

> probs[which.max(probs)]

5
0.2461

But suppose now that, instead of calculating the probability of observing exactly
k heads, you are instead asked to calculate the probability of observing at most k
heads, more than k heads, or, for example, between (k-2) and (k+3) heads, for some
k. How would you approach this problem? Begin by reformulating the condition
in mathematical terms. The probability of observing at most k heads, for example,
refers to the cumulative probability of observing either 0 heads, or 1 head, or 2 heads,
and so forth on to k heads. (Why? Because each of the values of our random variable
H are disjoint, as we discussed above; and the probability of a series of disjoint events
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is just the sum of the probabilities of the individual events.) So,

p(at most k heads) = p(H = 0) + · · ·+ p(H = k) = fH(0) + · · ·+ fH(k)

Likewise,

p(more than k heads) = p(H = k + 1) + · · ·+ p(H = n) = fH(k + 1) + · · ·+ fH(n)

Thus, the probability of a cumulative event can be calculated by simply adding up the
probabilities of each of the constituent events, as given by the PMF evaluated at each
of those values. It is crucial, in this regard, to accurately translate the verbal
problem you’re given into the corresponding mathematical formulation.
For example, the condition at least k heads requires us to begin summation from the
PMF evaluated at k and onward through to n, but the condition more than k heads
requires us to begin by calculating the PMF at k + 1 and move onward through to
n.

Let’s return to our example of the fair coin and calculate the probability of
observing no more than 6 heads. Tis is straightfoward: we simply need to add up
the PMF evaluated at 0, 1, 2, 3, 4, 5, and 6:

> sum(probs[1:7])

[1] 0.8281

> ## Why do we index from 1 through 7, rather than 0
> ## through to 6? Remember that R assigns the first
> ## element of any vector the index of 1, and so
> ## the probs vector is indexed from 1 through 11,
> ## even though the binomial variable H is defined
> ## over the range 0 through 10

We can visualize this calculation as the process of adding up the bars on the above
graph for the values of 0, 1, 2, 3, 4, 5, and 6, and then measuring the total height.

This key intuition — to wit, that, for discrete random variables, the probability
of observing a range of values is given by the sum of the PMF evaluated at the
corresponding values, one value at a time — is formalized in the concept of the cu-
mulative distribution function (CDF). For a discrete random variable X, defined
over a range of values from a to b, with a PDF fX , we formally define its CDF, FX

thusly:

FX(k) = p(X ≤ k) =
k∑

i=a

fX(i) (2)
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So, the CDF of a random variable, evaluated at a point, returns the cumulative
probability of observing that variable realize a value at most that great.

It’s good practice to familiarize yourself with how to manipulate a random vari-
able’s CDF to calculate a desired cumulative probability. Remember that the CDF
always returns the cumulative probability of observing the random vari-
able realize itself up to a certain value — that is, the cumulative probability
from the lowest possible to the specified value. Therefore, the probability of observing
a discrete random variable X yield a value of at most k is simply its CDF evaluated
at k: p(X ≤ k) = FX(k). But the probability of observing a value smaller than k is
p(X < k) = FX(k − 1) = FX(k) − fX(k), as we need to exclude the probability of
observing k from the cumulative calculation.

Now, returning to our fair coin example, suppose that we should like to calculate
the probability of observing at least 4 heads. Note that this is NOT given by FH(4).
Why? Because the CDF returns the probability of observing a value no greater than
a specified trheshold. So FH(4) would tell us the probability of observing at most 4
heads rather than at least 4 heads. A brute-force solution would be to simply add
up H’s PMF evaluated at each of the relevant points:

p(H ≥ 4) =
10∑
k=4

p(H = k) =
10∑
k=4

fH(k)

We can easily calculate this value in R:

> sum(probs[5:11])

[1] 0.8281

To refomulate our solution in terms of the CDF, we must first realize that the event
of observing at least 4 heads is the complement (negation) of the event of observing
at most three heads. The total probability of these two events is exactly 1, and we
can therefore formulate the former in terms of the latter:

p(H ≥ 4) + p(H < 4) = 1

p(H ≥ 4) = 1− p(H < 4)

Now, remember that, for discrete variables, p(X < k) 6= p(X ≤ k) = FX(k). If our
discrete values move in increments of 1, we can simplify thusly:

p(H ≥ 4) = 1− p(H < 4)︸ ︷︷ ︸
= p(H ≤ 3)

= 1− p(H ≤ 3)︸ ︷︷ ︸
= FH(3)

p(H ≥ 4) = 1− FH(3)
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Calculating this solution in R, we obtain the same answer as above:

> 1-sum(probs[1:4])

[1] 0.8281

(2): the continuous case

Continuous variables are a bit trickier to work with, and this note will only sum-
marize those aspects of their mathematics which you require for the quiz. (Strictly
speaking, only the application at the end of this section will be necessary for the
quiz, but, to make sense of that application, it is necessary to review the conceptual
foundations of working with continuous random variables.) The probability structure
of a continuous variable Y is given by its probability density function (PDF),
fY . This change in language has an important implication for how you should (and
should not) interpret a PDF. fY (k) returns the density that Y places on point k.
(Remember the formal definition of density: it is, at a given value, the proportion
of observations exhbiting that value per unit of measure.) Why did we move
away from probability to density in the case of continuous variables? Putting the
point somewhat crudely, this is because continuous variables have so many possi-
ble values — in fact, they have uncountably many values — that the probability of
observing any one value, in the continuous case, is exactly 0. It is, therefore, more
informative to consider the density of a continuous variables, which, evaluated at a
point, can be positive. Although you should not conflate density and probability, a
continuous variable’s density at a point can still be intepreted as a measure of how
probable the neighbourhood immediately surrounding that point is.

One of the most popular continuous distributions is the Gaussian (Normal) dis-
tribution, parametrized by its mean, commonly denoted µ, and standard deviation,
commonly denoted σ. The range of values that a Normal random variable can as-
sume is given by the whole of the real line, R. (What does this mean? The Normal
is defined over the entire family of numbers with the exception of complex numbers
— that is, numbers that contain an imaginary component i such that i2 = −1.)
The praticular case of a Normal distribution with µ = 0 and σ = 1 is known as the
standard Normal distribution, and a graph of its PDF is given below:
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The case of the standard Normal is worth examining a bit more closely. Any Normal
distribution is symmetrical around its mean and concentrates most of its density
within one standard deviation of the mean. Normal distributions can differ in terms
of their scale, however, and the scale of the standard Normal should be familiar to
you at this point: it is the z-score scale. We will return to this point in a moment.

Although continuous random variables assign null probability to individual values
in their range, we can still calculate the cumulative probability of observing the
variable realize itself to any of a possible interval of values. The only difference from
the discrete case is that, instead of summing over the variable’s PMF evaluated at
each of the points in the interval, we will now integrate the variable’s PDF over that
interval. This points to the more general relationship between density and probability
in the continuous case: the cumulative probability of a certain interval of values is
given by the corressponding area under the curve of that variable’s PDF.

To illustrate, suppose that X is a continuous variable defined over [a, b]. Suppose
that we wish to calculate p(X < c), for some c ∈ [a, b]. Notice that, because
continuous random variables assign null probability to any single value
in their range, p(X < c) = p(X ≤ c), which, as you recall, is not true for

8



discrete random variables. So,

p(X < c) = p(X ≤ c) =

∫ c

a

fX(x)dx

Likewise, the probability of observing X realize a value of at least c is given by:

p(X > c) = p(X ≥ c) =

∫ b

c

fX(x)dx,

where, in the case of a continuous random variable defined over the whole of the real
line, such as a Normal variable, you should substitute −∞ for a and ∞ for b.

We define the CDF of a continuous random variable X, FX , which returns the
cumulative probability of observingX realize itself to a most a certain value, similarly
to the discrete case, substituting integration for summation:

FX(c) = p(X < c) = p(X ≤ c) =

∫ c

a

fX(x)dx

To calculate p(X > c) in terms of the CDF of X, it is easy to proceed by analogy
to the discrete case. Because p(X > c) + p(X < c) = 1, we have:

p(X > c) = 1− p(X < c) = 1− FX(c)

Application: Comparing Relative Probabilities

As you can see, calculating the CDFs of continuous random variables can be tricky,
and we will not require you to conduct any such calculations on the quiz. However,
understanding how CDFs work can prove useful for more general problems. Suppose,
for example, that you are given two Normal random variables:

X ∼ N (0, 9)

Y ∼ N (0, 4),

where the sign ∼ means "distributed", and the notation Z ∼ N (µ, σ2) means that
Z has a Normal distribution with mean µ and standard deviation σ (variance σ2).
Suppose you are asked: which of the following two events is more probable, X > 1 or
Y > 1? One reasonable place to begin is by writing out these probabilities in terms
of the corresponding CDFs:

p(X > 1) = 1− p(X < 1) = 1− FX(1)

p(Y > 1) = 1− p(Y < 1) = 1− FY (1)
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Thus, to figure out whether p(X > 1) > p(Y > 1), we need to know whether
1 − FX(1) > 1 − FY (1) or, equivalently, whether FX(1) < FY (1). Notice that, to
solve this problem, you do not need to calculate the CDFs! This is because X and
Y belong come from the same family of distributions — the Normal family — and
differ only in the parameters of their distributions. If we could put both X and Y
on the same scale, it would then be possible to say which CDF generates a higher
cumulative probability simply by comparing the relative values of X = 1 and Y = 1
on that baseline scale.

To contextualize this problem — although you will not be able to do this on the
quiz — it’s useful to begin by visualizing the two probabilities. We can, first, graph
the two densities. Next, we can visualize p(X > 1) and p(Y > 1) as the shaded areas
under the two curves, from X = 1 to ∞ and from Y = 1 to ∞, respectively:
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It is difficult to compare the two areas visually because the standard deviations of
X and Y are different. But we can put both variables on the same scale to simplify
the problem. It is useful to consider the z-scale for the task. Since X and Y are
both Normal random variables, putting them on the z-scale will transform them into
standard Normal random variables. To perform the transformation, we simply need
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to calculate, separately for X and Y , the z-scores corresponding to each value of
X and Y . Specifically, in order to compare p(X > 1) and p(Y > 1), we need to
calculate the z-scores corresponding to X = 1 and Y = 1:

zx=1 =
1− µX

σX
=

1− 0

3
=

1

3

zY=1 =
1− µY

σY
=

1− 0

2
=

1

2

Thus, calculating whether p(X > 1) > p(Y > 1) is equivalent to calculating the
following expressions:

p(X > 1) > p(Y > 1) ⇔ 1− FX(1) > 1− FY (1)

⇔ FX(1) < FY (1)

⇔ FZ(ZX=1) < FZ(ZY=1)

⇔ FZ(
1

3
) < FZ(

1

2
)

Recall that the CDF calculates the cumulative probability of a random variable up
to a specified value. If we compare the values of a CDF for a Normal random variable
at two distinct points, we know that the greater of the two points — that is, the
one father to the right on the x-axis — will also correspond to the higher value on
the CDF, because it allows the CDF to accumulate more probability than a lower
value. This general relationship is illustrated by the following two graphs. Both plot
the standard Normal density. The plot on the left visualizes FZ(

1
3
) = p(Z < 1

3
), and

the plot on the right visualizes FZ(
1
2
) = p(Z < 1

2
). Observe how the mere fact that

1
2
> 1

3
, and, by implication, that the CDF of Z evaluated at 1

2
can accumulate more

probability than the same CDF evaluated at 1
3
, is enough to deduce that p(Z < 1

2
) >

p(Z < 1
3
), quite without having to perform any calculations:

11



−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

PDF of Z

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

PDF of Z

D
en

si
ty

Thus, since 1
3
< 1

2
, we know that FZ(

1
3
) < FY (

1
2
) and that, from what we demon-

strated above, p(X > 1) > p(Y > 1).

3 Expectation and Variance
We define the expectation of a random variable as the weighted mean of all of its
possible values, each weighted either by its probability, in the discrete case, or by its
density, in the continuous case:

E(X) =

{∑
x xf(x), if the variable is discrete∫

x
xf(x)dx, if the variable is continuous

(3)

We define the variance of a random variable, X, as the average squared deviation
from its expectation:

V(X) = E
[
(X − E(X))2

]
For example, suppose that X is distributed binomial, with the total number of trials
given by n and the probability of success in a trial by p. Then, E(X) = np and

12



V(X) = np(1 − p). To illustrate, in our example of the fair coin tossed 10 times,
the expected (i.e., average) number of observing heads over 10 tosses is given by
np = 10 × 0.5 = 5, with variance of np(1 − p) = 10 × 0.5 × 0.5 = 2.5. This means
that, if we repeatedly tossed a fair coin 10 times, then, on average across these
repeated sequences of 10 tosses, the average number of times that heads would come
up is 5, and the variance from one sequence to another is 2.5. For a Normal random
variable Y , distributed Y ∼ N (µ, σ2), we have E(Y ) = µ and V(Y ) = σ2.

Although you’re not expected to remember the above formulae, it is important
that you memorize the following rules for working with the expectation and variance
functions. Suppose that X and Y are two random variables, which may or may not
be independent, and a and b are some constants. Then, the following results hold:

1. E(a) = a and V(a) = 0

2. E(aX) = aE(X) and V(aX) = a2V(X)

3. E(aX + b) = aE(X) + b and V(aX + b) = a2V(X)

4. E(aX + bY ) = aE(X) + bE(Y )

Suppose that you are further given that X and Y are independent. Then, the
following additional result holds:

1. V(aX + bY ) = V(aX) + V(bY ) = a2V(X) + b2V(Y )

Application: Linear Combinations of Independent Normal Vari-
ables

One important application of the aforementioned rules is to the class of problems
in which you need to calculate the distribution of a random variable which is de-
fined as a combination of other random variables. We only expect you to know
one straightfoward case of this general problem: linear combinations of independent
normal variables. Suppose, for example, that you’re given two independent random
variables, X and Y , with the following distributional assumptions:

X ∼ N (µX , σ
2
X)

Y ∼ N (µY , σ
2
Y )

Suppose, next, that you’re given some Z = aX+bY +c, for some constants a, b, and c.
How is Z distributed? There are two steps to solving this problem. The first step is
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to determine the distributional family to which Z belongs. There is a result, which
we state here for you without proof, that a linear combination of independent
normally-dsitributed random variables is itself normal. Since Z is a linear
combination ofX and Y , two indepndent and normally-distributed random variables,
you can therefore infer that Z is itself normal: Z ∼ N (µZ , σ

2
Z), for some unknown

µZ and σ2
Z .

In the second step, we calculate these two quantities. Remember that E(Z) =
µZ and V(Z) = σ2

Z . Simply plug in the formula for Z that you’re given, and apply
the above rules:

µZ = E(Z)
= E(aX + bY + c)

= E(aX) + E(bY ) + E(c)
= aE(X) + bE(Y ) + c

= aµX + bµY + c

Further taking advantage of the fact thatX and Y are independent, you can calculate
the variance of Z:

σ2
Z = V(Z)

= V(aX + bY + c)

= V(aX) + V(bY ) + V(c)
= a2V(X) + b2V(Y )

= a2σ2
X + b2σ2

Y

Thus, the solution is that Z ∼ N (aµX + bµY + c, a2σ2
X + b2σ2

Y ).
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